
Development and Performance of a Scalable Version
of a Nonhydrostatic Atmospheric Model

Arthur A. Mirin and Gayle A. Sugiyama
Atmospheric Science Division,

Lawrence Livermore National Laboratory, Livermore, CA

Sue Chen, Richard M. Hodur, Teddy R. Holt, and Jerome M. Schmidt
Marine Meteorology Division,

Naval Research Laboratory, Monterey, CA

Abstract

The atmospheric forecast model of the Naval Research Laboratory's (NRL) Coupled
Ocean/Atmosphere Mesoscale Prediction System (COAMPS) has been developed into a parallel,
scalable model in a joint collaborative effort with Lawrence Livermore National Laboratory
(LLNL). The new version of COAMPS has become the standard model of use at NRL and in
LLNL's Atmospheric Science Division. The main purpose of this enterprise has been to take
advantage of emerging scalable technology, to treat finer spatial and temporal resolutions needed in
complex topographical or atmospheric conditions, as well as to allow the utilization of improved
but computationally expensive physics packages. The parallel implementation facilitates the ability
to provide real-time, high-resolution, multi-day numerical weather predictions for forecaster
guidance, input to atmospheric dispersion simulations, and forecast ensembles.

Introduction

The three-dimensional Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS)
originally developed by the Naval Research Laboratory (NRL) for serial applications has been
developed into a parallel, scalable model in a joint collaborative effort with Lawrence Livermore
National Laboratory (LLNL). COAMPS consists of atmospheric and ocean data assimilation
(including data quality control), analysis, initialization, and a nonhydrostatic atmospheric forecast
model coupled to a hydrostatic ocean model (Hodur 1997). The atmospheric system has been used
for operational mesoscale forecasting since 1996. It has provided products to the meteorological
community from both a supercomputer central site (Fleet Numerical Meteorology and
Oceanography Center located in Monterey, CA) and the Department of Energy’s National
Atmospheric Release Advisory Capability (NARAC) at LLNL. Regional sites using workstations
(Naval centers, Universities, and Government Agencies) have recently begun to use COAMPS in
an operational mode. In the research community, COAMPS has been used extensively for both
idealized as well as real data simulations (Haack and Burk 2001, Haack et al 2001, Doyle and
Shapiro 2000, Doyle et al. 2000, Dorman et al. 2000, Liu et al. 2000, Burk and Haack 2000,
Westphal et al. 1999).

COAMPS description

COAMPS consists of an atmospheric data assimilation system containing a nonhydrostatic
atmospheric forecast model and an ocean analysis and forecast model. The initial focus of the
parallelization effort has been on the atmospheric forecast model. COAMPS solves the
nonhydrostatic, compressible form of the dynamical equations, and includes relevant physical
processes such as explicit moist physics, cumulus convection, and radiation, as well as
parameterizations for subgrid-scale mixing. The vertical sigma coordinate is chosen to allow flow
over an irregular surface and a variety of horizontal coordinate systems can be invoked. The
equations are discretized using finite differences on an Arakawa C grid. The difference scheme is
fundamentally explicit in the horizontal direction, with subcycling to evolve the faster moving
sound and gravity waves. Some of the vertical phenomena are integrated implicitly. Most terms
are represented to second order accuracy, with options to use fourth order methods for the diffusion
and advection.

Programming practices

The underlying principle in COAMPS programming is that the code be capable of executing
efficiently across vector, parallel, or symmetric multi-processor (SMP) machines by simply
changing run-time options. This necessitates slightly more overhead through additional arrays and
syntax logic, but pays dividends in flexibility and portability. The code, originally written in
Fortran-77, now invokes a number of Fortran-90 constructs. Memory management is carried out
using pointers and allocatable arrays. Representation of physical quantities on multiple grids is
facilitated using derived data types. These derived types are used to maximize message lengths by
taking horizontally-mapped data and creating new data types that include all vertical levels. Every
effort is made to adhere to standards in order to achieve portability and minimize the recoding

needed to accommodate new architectures, and is in effect a form of optimization. Three specific
areas related to programming practices will be discussed: 1) domain decomposition, 2) nesting,
and 3) input/output (I/O). The differences between practices adopted for the new scalable code and
the vector (or serial) code will be highlighted.

Domain decomposition

The integral design component of the new scalable COAMPS code is the use of horizontal domain
decomposition. The decomposition of the entire model domain into subdomains is based upon run-
time, user-specified values of the number of subdomains in the x- and y-directions. Based upon
these values the decomposition technique automatically partitions the data among the nodes of a
parallel machine into as equal a number of grid points per subdomain as possible for each x- or y-
direction. (Because of the tight vertical coupling that exists in COAMPS, the decomposition is
limited to the horizontal plane.) The user is also allowed run-time flexibility in specifying the
number of grid points to be used in the halo region (usually either one or two grid points). The
halo region is necessary to facilitate finite differencing and data communication with nearest
neighbors. Because of fourth-order differencing in COAMPS, two halo points are typically used.
Communication between subdomain processes is achieved using either Message Passing Interface
(MPI) 1 or 2. Within each subdomain an additional level of parallelization is provided through the
use of the de-facto standard OpenMP. OpenMP directives can also be executed for SMP-only
applications.

Figure 1 shows a sample single nest COAMPS horizontal domain illustrating the relationship
between decomposition and halo regions. The sample domain is dimensioned (1:m,1:n) (or 23 x
23) grid points in the x- and y-directions, as indicated by the heavy solid box. The domain is
decomposed into nine subdomains (P0 to P8) in a 3 x 3 configuration. The heavy shaded areas
indicate the computational region for each subdomain which extend from indices (imin:imax,
jmin:jmax). These indices are those automatically computed to evenly distribute the data
horizontally across subdomains. In the serial code this extent is analogous to (2:m-1, 2:n-1). Thus,
no computations are performed on the outer-most row or column of data except for the
specification of the lateral boundary condition data.

For this sample domain there are two halo points for each subdomain, illustrated using only
subdomain 7 (P7) in Figure 1. The open circles represent grid points within the computational
domain of P7. The two solid grid points surrounding the computational points represent the halo
region for P7. The extent of P7 with two halo points is from (iminf:imaxf, jminf:jmaxf). Thus,
indices for the halo regions are trivially computed as iminf=imax-nb, or imaxf=imax+nb, where nb
is the number of halo points. Note that the halo points extend nb points into the neighboring
subdomains.

Additional indices and variables are computed to expedite communications between processors.
For example, each processor computes its “physical” extent (which can include points out to the
boundary of the entire domain), x- and y-direction data widths, neighboring processor relationships
(i.e., is this processor northernmost? southernmost?), etc. Indices and variables differ based upon
whether the user chooses the run-time option for scalable or serial code (or a combination). For

serial applications long vector lengths are desired. However, for scalable code two-dimensional
loop indices are limited by the horizontal extent of each subdomain. The logic of the new code
allows for both types. This is achieved by specifying loop indices that collapse two-dimensional
loops into a single dimension to take advantage of vectorization for serial applications, but remain
as two-dimensional indices for scalable applications.

Nesting

An arbitrary number of inner nests can be specified in COAMPS. The only constraint is that the
number of grid points be a multiple of three plus one with a consequent 3:1 reduction in horizontal
resolution. There is a similar reduction in time step such that the inner (or child) nest is called three
times for each parent time step. Each child nest is decomposed in a similar fashion as described in
the section above. The added complexity arises from the required communications between the
parent and child nests. Figure 2 shows the single nest of Figure 1 with a child nest included. The
open circles show the computational area of parent subdomain P0 and the solid circles the two halo
points. The heavy solid line through the child nest illustrates the extent of the parent subdomain
into the child. Note that because of the 3:1 restriction in nest resolution, parent points coincide
with every third child point.

For this sample nine subdomain example, the child nest is similarly decomposed with the same 3 x
3 configuration (Figure 3), though COAMPS does allow different configurations for each nest as
long as the total number of subdomains is the same. The child nest is dimensioned (25 x 25 grid
points) with the two solid grid points surrounding the computational area of child subdomain 3
(C3) indicating the halo region. The heavy solid lines through C1, C3, and C4 represent the
boundaries of parent subdomain P0 (as shown in Figure 2). For this simple example, the other
parent subdomains are not shown. Note however that any given child subdomain can overlap with
several different parent subdomains.

For one-way interactive nesting, the communication of boundary information is from the parent
nests to the child nests at every time step of the parent nest. The boundary information from the
parent nest is communicated to the child over a user-specified region surrounding the entire child
domain called the blend zone (Figure 3). This blend zone is typically five to seven child grid
points wide on the child nest. The programming practice used in the nesting strategy to distinguish
regions of the appropriate parent and child nests that need to be communicated is to employ masks.
Masks are simply “on or off” switches. Data points for a given subdomain, be it parent or child,
are assigned mask values of 1 (“on”) if they are in the blend zone and 0 (“off”) if they are not.
Masks for each child subdomain are trivially determined from the number of blend zone points on
the perimeter of the subdomain. Parent masks are determined based upon the origin reference
location and extent of the inner nests relative to the parent nest. Once the masks have been
determined, each parent subdomain determines, based upon the number of “on” mask values and
their relationship to child subdomains, whether and where it should send data. Similarly, child
subdomains determine from which parent subdomain they should receive based upon their mask
values and their relationship to the parent subdomains.

The data received from a parent processor is stored in a temporary array that resides on each child
processor. Each temporary array (or envelope) is defined in parent coordinate space and is
designed to just cover the domain size of the entire child subdomain. Only those parent points
required to compute the horizontal interpolation within the blend zone on the nest boundaries are
sent to the envelope array. Offsets are computed to map the arriving parent grid points into the
appropriate location within the envelope. Once the parent data points arrive, horizontal
interpolation from the coarse mesh data of the parent grid to the fine mesh points of the child grid
is then performed using the previously defined masks. As illustrated in Figure 4, the position and
size of the envelope is required to be slightly different for interpolating data to the mass and
momentum points due to the Arakawa-C grid staggering.

The hatched region in Figure 5 shows the parent envelope for mass points that must be
communicated from parent P0 to child C3 for the sample horizontal domain. The region contains
nine parent grid points that represent the intersection of P0 and the child blend zone on C3. Similar
regions would exist for each blend zone region on all child subdomains except C4. C4 is an
interior subdomain and does not have an exterior blend zone region.

COAMPS also has the option to allow the inner nests to move in time. This adds another level of
complexity to the programming because additional communications and arrays are needed to
record the movement of the nests. The strategy employed follows the basic programming practices
for a fixed nest discussed above. The communication of boundary information is similar except
that at the time a nest is moved, the reference points for the parent grid must be reset to allow for
the correct information to be communicated to the child nests. In addition, when a child nest is
moved, the new region in which the nest has moved must be interpolated from existing information
on the parent nest. The interpolated region could span across a variety of parent processors and
require additional communications.

Input/Output (I/O)

COAMPS processes a tremendous amount of data for any given analysis and forecast cycle. Thus,
efficient handling of the input and output of this data is crucial for good computational
performance. The input of initial and boundary condition data into COAMPS is handled using
either MPI-1 or MPI-2 constructs as specified by the user at run-time. For either option COAMPS
uses a designated I/O task that first reads the entire two- or three-dimensional field into its own
local memory. Using either MPI-1 or MPI-2, the data are then communicated to the appropriate
subdomains as specified by the domain decomposition.

The output of COAMPS data can be handled in two separate ways as specified by the user at run-
time. The first option is to use a designated I/O task similar to the input procedure described
above. The I/O task collects data from all subdomains and writes to the designated output file. The
other option is to use MPI-2 I/O directives. In this option each task writes into the designated
output file only the portion of the data that it contains, using the appropriate location offset.
Scaling results for real-data COAMPS simulations with MPI-1 versus MPI-2 communications and
I/O generally show comparable results for configurations with less than 64 processors, but show
20-30% speedup for MPI-2 over MPI-1 for greater than 64 processors.

Conclusion

Through collaboration between the Naval Research Laboratory, Monterey and Lawrence
Livermore National Laboratory, a portable, scalable version of the COAMPS atmospheric forecast
model has been developed and adopted for numerical weather prediction. The model agrees with
and maintains virtually all of the physical capability of the (now frozen) serial version. The
capability of moving nests has been added. The model uses two-dimensional domain
decomposition and handles parallelism through MPI with OpenMP. The model outperforms the
Cray T90 and scales well to at least 50-100 processors.

Acknowledgements

Work performed under the auspices of the U.S.D.O.E. by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-ENG-48, and by the Naval Research
Laboratory with support from the Office of Naval Research through Program PE-0602435N and
from the Department of Defense through Program PE-0603755D.

References

Burk, S.D., and T. Haack, 2000: The dynamics of wave clouds upwind of coastal orography. Mon.
Wea. Rev., 128, 1438-1455.

Dorman, C., T. Holt, D. Rogers, and K. Edwards, 2000: Large-scale structure of the June-July
1996 marine boundary layer along California and Oregon. Mon. Wea. Rev., 128, 1632-1652.

Doyle, J.D., and M.A. Shapiro, 2000: A multi-scale simulation of an extreme downslope
windstorm over Norway. Meteor. Atmos. Phys., 74, 83-101.

Doyle, J.D., D.R. Durran, B.A. Colle, C. Chen, M. Georgelin, V. Grubisic, W.R. Hsu, C.Y. Huang,
D. Landau, Y.L. Lin, G.S. Poulos, W.Y. Sun, D.B. Webe, M.G. Wuotele, and M. Xue, 2000: An
intercomparison of model predicted wave breaking for the 11 Jan 1972 Boulder windstorm.
Mon. Wea. Rev., 128, 901-914.

Haack, T., and S.D. Burk, 2001: Summer-time marine refractivity conditions along coastal
California. J. Appl. Meteor., 40, 673-688.

Haack, T., S.D. Burk, C. Dorman and D. Rogers, 2001: Supercritical flow interaction within the
Cape Blanco-Cape Mendocino orographic complex. Mon. Wea. Rev., 129, 688-708.

Hodur, R.M., 1997: The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale
Prediction System (COAMPS), Mon.Wea. Rev., 125, 1414-1430.

Liu, M., D.L. Westphal, T.R. Holt, and Q. Xu, 2000: Numerical simulation of a low-level jet over
complex terrain in Southern Iran. Mon. Wea. Rev., 128, 1309-1327.

Westphal, D.L., T.R. Holt, S.W. Chang, N.L. Baker, T.F. Hogan, L.R. Brody, R.A. Godfrey, J.S.
Goerss, D.J. Laws, and C.W. Hines, 1999: A meteorological re-analysis for the study of Gulf
War Illness. Wea. Forecasting., 14, 215-241.

Figure 1. COAMPS single nest (m,n) 23 x 23 grid point domain for a 3 x 3 domain decomposition.
The computational area of each subdomain in shaded. For subdomain 7 (P7) open circles indicate
computational grid points and solid circles indicate the two halo points.

(1,1)

(m,n)(1,n)

(m,1)(1,1)

(m,n)(1,n)

(m,1)

P0 P1 P2

P6

P3 P4 P5

P7 P8

(imin,jmin)

(imax,jmax)

(1,1)

(m,n)(1,n)

(m,1)

(iminf,jminf)

(imaxf,jmaxf)

P7

Figure 2. COAMPS parent nest domain similar to Figure 1, but in addition showing the overlap
with a child nest. The open circles show the computational points and the closed circles show the
two halo points of P0. The child nest is a 25 x 25 grid point domain. The heavy solid lines through
the center of the child domain represent the outer extent of the parent subdomain for P0 that
intersect with the child domain, as shown in Figure 3.

(1,1)

(m,n)(1,n)

(m,1)(1,1)

(m,n)(1,n)

(m,1)

P0 P1 P2

P6

P3 P4 P5

P7 P8

(1,1)

(m,n)(1,n)

(m,1)

P7

Figure 3. COAMPS child nest with 25 x 25 grid points and 3 x 3 domain decomposition. The
heavy solid lines and larger solid circles represent the parent processor P0 as in Figure 2. The
smaller open circles are the computational points and the closed circles are the two halo points of
C3. The seven point blend zone is the area outside the dashed box.

C2

C5

C6 C7 C8

C0 C1

C4P3C3
 7 point
 blend zone

Parent P0

Parent P0

 Figure 4. 1-D envelope structure for an Arakawa C-grid.

Envelope Boundary for Mass Points (π)

Envelope Boundary for Momentum Points (u)

 u π u π u π u π u

π u π u π u π u π u π u π u π u π u π uChild
Stagger

Parent
Stagger

C0
Left Nest
Boundary

Nest blend
 zone

Parent points sent
 to envelope

Nest Processor
Boundary

x

Figure 5. Sample COAMPS child nest and parent nest similar to Figure 3. The nine larger solid
circles in the hatched region are the envelope of parent mass grid points that must be
communicated from parent P0 to child C3 based upon the given seven point child blend zone. In
this hatched region, mask values for parent and child nests are both equal to one.

C2

C5

C6 C7 C8

C0 C1

C4
 7 point
 blend zone

Parent P0

Parent P0

C3

